|
Post by Admin on Jun 15, 2018 18:22:23 GMT
Figure 6: MDS with 21 ancient populations. The 101 ancient Hungarian samples belong to 75 HVS-I haplotypes (haplotype diversity Hd = 0.987). The haplotype diversity is highest in the Avar group, and lowest in the contact zone dataset (Table 1). The shared haplotype analysis (SHA) shows that medieval populations from Southern Europe (Spain and Italy) shared over 50% of haplotypes with the conqueror population (Fig. 5 and Supplementary Table S10). High proportions of shared lineages with the conquerors were detected in the contact zone population (43.5%), Vikings from Norway (39.3%), Iceland (39.7%), and 6th-century Lombards in Hungary (39.3%). The SHA analysis was strongly influenced by altering haplotype diversity and the high number of Cambridge Reference Sequence (rCRS) H lineages in medieval Spanish, Italian and Norwegian Viking groups, which caused high proportion of lineage sharing with only a small number (n = 4–5) of shared lineage types. Medieval populations from Italy and Spain shared many of their haplotypes (40–48%) with the Avar and contact zone populations as well. On the other hand, many lineages of the Bronze Age Andronovo, Baraba, and Bronze Age population of the region of today’s Kazakhstan were shared with the conquerors (37.5–29.4%), with some identical Asian lineages among them. We analyzed more deeply the sharing of the Eastern Eurasian haplotypes–found in the Carpathian Basin medieval datasets–with modern and ancient populations (Supplementary Table S11). Based on our updated Eurasian mtDNA database of 64,650 HVS-I sequences, the Asian lineages in the conqueror dataset showed diverse hits. Three Asian A haplotypes had no matches in our modern-day mtDNA database (see references in Supplementary Table S15). Other A11 and A12a haplotypes had parallels in present-day Uzbekistan, Kazakhstan, other Asian populations, in people of the Xiongnu confederation of the 3rd BC to 2nd AD century, in the late medieval Yakuts, and in medieval Scandinavia. Two B haplotypes were present in today’s China, Kazakhstan and spread as far as Thailand. The detected conqueror C-C4, F1b, and G2a haplotypes were widespread in modern Eurasia, and had parallels even in China and Korea. Six of these C, F, and G2a haplotypes had parallels in ancient populations of Asia. Among the five Asian D lineages, two were unique in the database and two were common in Central and East Asia. One D haplotype however (Der4.522) showed rare occurrence in Kazakhs, Uzbeks and Altaians, and Siberian populations. Among the Avars, three Asian haplotypes (C, M, D4c1) were found. One C haplotype had only one match in modern Kazakh population, the other M lineage was common in Central and East Asia, but also occurred in Southwest Asia and Europe. The third Asian haplotype was D4c1, which also occurred at low frequency in Central, North, and East Asia (Supplementary Table S11). It is noted that other lineages belonging to Western Eurasian type haplogroups could also be brought into the Carpathian Basin from Central/North Asia, for example, U4 or T types that were also frequent in ancient and modern Siberia17. We selected 23 modern populations from the GDM, MDS, and PCA datasets, which possibly had increased lineage-sharing with the conquerors and we compared them using a modern SHA (Supplementary Table S12). Populations speaking Uralic languages are not well studied for mtDNA, therefore we could only use Khantys, Mansis, Nenets, and Komis as references for Uralic peoples. The ancient conquest-period population had the highest lineage-sharing with the Tatars in Russian Tatarstan, and the Nenets and Komi groups (42–36%). They were followed by Hungarians, Russians in Bashkortostan, and three populations of almost identical percentages; Ukrainians, the Khanty and Mansi population, and Szeklers. When counting lineages, rather than the number of sequences, Csangos, Khantys and Mansis, and the population of the Russian Bashkortostan Republic were the third, fourth and fifth populations with the highest lineage-sharing (22.6–17%). Interestingly, the relatively low lineage sharing with Uzbeks and Turkmens did not reflect the high similarities visible on MDS and GDMs (Fig. 4, Supplementary Fig. S5). Scientific Reports volume 6, Article number: 33446 (2016)
|
|
|
Post by Admin on Jul 29, 2018 18:22:08 GMT
Figure 1 Map of Iraq illustrating present and former Marsh areas. The majority of the subjects analysed in this study are from the Al-Hawizah Marshes, the only natural remaining marsh area in southern Iraq [4]. The ancient inhabitants of the marsh areas were Sumerians, who were the first to develop an urban civilization some 5,000 years ago. Although footprints of their great civilization are still evident in prominent archaeological sites lying on the edges of the marshes, such as the ancient Sumerian cities of Lagash, Ur, Uruk, Eridu and Larsa, the origin of Sumerians is still a matter of debate [5]. With respect to this question, two main scenarios have been proposed: according to the first, the original Sumerians were a group of populations who had migrated from "the Southeast" (India region) and took the seashore route through Arabian Gulf before settling down in the southern marshes of Iraq [6]. The second hypothesis posits that the advancement of the Sumerian civilization was the result of human migrations from the mountainous area of Northeastern Mesopotamia to the southern marshes of Iraq [7], with ensuing assimilation of the previous populations. The screening of 45 SNPs, plus one identified in this survey, in Marsh Arabs and Iraqis identified 28 haplogroups, 14 in the marsh sample and 22 in the control Iraqis. Only eight haplogroups were shared by both groups. Their phylogenetic relationships and frequencies are shown in Figure 2. More than 90% of both Y-chromosome gene pools can be traced back to Western Eurasian components: the Middle Eastern Hg J-M304, the Near Eastern Hgs G-M201, E-M78 and E-M123, while the Eurasian Hgs I-M170 and R-M207 are scarce and less common in the Marsh Arabs than in the control sample. Contributions from eastern Asia, India and Pakistan, represented by Hgs L-M76, Q-M378 and R2-M124, are detected in the Marsh Arabs, but at a very low frequency. Phylogeny of Y-chromosome haplogroups and their frequencies (%) in Marsh Arab and Iraqi populations. Haplogroups are labelled according to the Y Chromosome Consortium [17, 18] and the International Society of Genetic Genealogy [16]. Differently from previously reported [19], the M365 mutation was observed in two J1-Page08 Y-chromosomes (Marsh Arabs). In these two subjects, M365 was observed in association with the new mutation L267.2 discovered while typing the M365 marker. It consists of an A to G transition at nucleotide position 159. The markers P37, M253, M223 of haplogroup I, M81 and M293 of haplogroups E, and M367, M368 and M369 of haplogroup J1 were typed but not observed. A star (*) indicates a paragroup: a group of Y chromosomes not defined by any reported phylogenetic downstream mutation. nt: not tested. (a) Heterogeneity. Haplogroup J accounts for 55.1% of the Iraqi sample reaching 84.6% in the Marsh Arabs, one of the highest frequencies reported so far. Unlike the Iraqi sample, which displays a roughly equal proportion of J1-M267 (56.4%) and J2-M172 (43.6%), almost all Marsh Arab J chromosomes (96%) belongs to the J1-M267 clade and, in particular, to sub-Hg J1-Page08. Haplogroup E, which characterizes 6.3% of Marsh Arabs and 13.6% of Iraqis, is represented by E-M123 in both groups, and E-M78 mainly in the Iraqis. Haplogroup R1 is present at a significantly lower frequency in the Marsh Arabs than in the Iraqi sample (2.8% vs 19.4%; P < 0.001), and is present only as R1-L23. Conversely the Iraqis are distributed in all the three R1 sub-groups (R1-L23, R1-M17 and R1-M412) found in this survey at frequencies of 9.1%, 8.4% and 1.9%, respectively. Other haplogroups encountered at low frequencies among the Marsh Arabs are Q (2.8%), G (1.4%), L (0.7%) and R2 (1.4%).
|
|
|
Post by Admin on Jul 30, 2018 18:32:23 GMT
MtDNA variation A total of 233 haplotypes [Additional file 2] and 77 sub-haplogroups (Table 1) have been identified in this survey. Only 26 of the observed sub-haplogroups are shared between the two populations, and most of the remaining are represented by singletons. According to their known or supposed geographic/ethnic origin [32, 33, 34], in addition to a strong West Eurasian component (77.8% and 84.1% in the Marsh Arabs and Iraqis, respectively), it is possible to recognize contributions from North/East and Sub-Saharan Africa and from East and South Asia. West Eurasian mtDNAs observed in this study are approximately equally distributed into macro-Hgs R0, KU, and JT, although with haplogroup and sub-haplogroup differences between the two Iraqi samples. In the Marsh Arabs Hg J prevails (15.2%) followed by Hgs H (12.4%), U (9.7%) and T (7.6%). Conversely, in the control group, the most frequent is Hg H (17.0%) followed by Hgs U (14.8%), T (12.6%) and J (11.9%). Both the less represented N1 and W haplogroups show higher frequencies (marginally significant) in Marsh Arabs. The most frequent macro-Hg R0 includes molecules R0a ((preHV)I), more represented among the Marsh Arabs (6.9% vs 4.0%), HV, observed mainly as HV*, but especially H mtDNAs. Although the majority of the H mtDNAs (7.6% in Marsh Arabs vs 10.8% in Iraqis) did not fall into any of the tested sub-haplogroups, a limited number of H subsets (H1, H5, H6, and H14) have been observed. In particular, while H5 (3.4% vs 2.8%), H1 (0.7% vs 1.7%) and H14 (0.7% vs 1.1%) were found in both groups, H6 was observed only in one subject of the control group. Almost all the main U sub-haplogroups and the nested K branch were found in the Iraqi sample, but only a sub-set of them (K1, U3, U4, U5, in addition to the South West Asian U7) were observed in the Marsh Arabs. The nested Hg K, mainly K1, was observed at a comparable frequency in both groups (6.2% in the marshes vs 4.6%). The situation of macro-Hg JT is more complex. Significant differences (P < 0.05) emerged in the distribution of J1 and J2 sub-clades, with the latter much more frequent in the marshes (6.2% vs 1.7%). By contrast, Hg T displayed a lower frequency in the marshes (7.6% vs 12.6%) due to a significant lower incidence of its T2 sub-clade (2.1% vs 6.9%, P < 0.05). On the other hand, Hgs N1 (8.2%) and W (4.8%), were both present in the marshes at a three-fold higher frequency than in Iraqis. Haplogroup X was detected as X2 with a frequency lower than 2% in both population samples. African haplogroups are of North/East and sub-Saharan African origin and represent minor components in both groups. The North/East African contribution is mainly represented by Hg M1 which accounts for 2.8% of Marsh Arabs and 1.2% of the Iraqi sample, the latter displaying also 0.6% of Hg U6. The sub-Saharan African component comprised Hgs L0, L1, L2 and L3 and accounted for 4.9% in the marshes and 9.1% of the control sample. Out of the twelve African sub-haplogroups identified in this survey, six in the marshes and seven in the control sample, only one (L2a1) was shared between the two Iraqi groups. The Asian contribution was significantly higher (P < 0.01) in the Marsh Arabs than in the control sample (11.8% vs 5.2%). It includes mtDNAs belonging to the Southern Asian Hgs M (M*, M33, M37e) and R2 in Marsh Arabs, and R5a and U2d in the control sample. Haplogroup U7, frequent in Southwest Asia, was observed in both groups. The East Asian haplogroup B4 was detected at a very low frequency in both Iraqi groups.
|
|
|
Post by Admin on Aug 1, 2018 18:15:35 GMT
Figure 3 Principal component analyses of Y-chromosome and mtDNA haplogroup frequencies. The PCA analyses were carried out on haplogroups listed in Additional files 3 and 4. Haplogroups with frequencies lower than 5% in all the populations were not considered. On the whole, 28% of the total variance is represented for the Y-chromosome (16% by the first PC and 12% by the second PC) and 39% for the mtDNA (20% by the first PC and 19% by the second PC). Populations included are: IRM, Marsh Arabs; IRQ, Iraqi; Alb, Albania; Alg-A, Algeria-Arabs; Alg-B, Algeria-Berbers; Aze, Azerbaijan; Ben, Benin; Bos, Bosnia; Bul, Bulgaria; Cau, Caucasus; Crt, Crete; Cro, Croatia; Cze, Czech Republic; Dru, Druze; Egy, Egypt; Egy-A, Egypt-Arabs; S-Egy, South Egypt; N-Egy, North Egypt; Eth-A, Ethiopia-Amhara; Eto-O, Ethiopia-Oromo; Geo, Georgia; Gre, Greece; Hun, Hungary; Ind, India; Ind-AA, India-Austro-Asiatics; Ind-D, India-Dravidians; Ind-IN, India-Indo-Europeans; Ind-TB, India-Tibeto-Burmans; N-Eur, North Europe (Austria, Germany, Ireland, North Italy, Poland, Scotland); N-Irn, North Iran; S-Irn, South Iran; IRN, Iran; NeI, North East Italy; C-Ita, Central Italy; S-Ita, South Italy; Sar, Sardinia; Jor, Jordan; Kur, Kurds; Leb-C, Lebanon-Christians; Leb-D, Lebanon-Druze; Leb-M, Lebanon-Muslims; Mar, Morocco; Ber, Morocco-Berbers; Oma, Oman; Pak, Pakistan; Pak-D, Pakistan-Dravidians; Pak-B, Pakistan-Burushaski; Pak-IE, Pakistan-Indo-Europeans; Pal, Palestinian; Pol, Poland; Qat, Qatar; Rwa-H, Rwanda-Hutu; Rwa-T, Rwanda-Tutsi; Sau, Saudi Arabia; Slv, Slovenia; Som, Somalia; Spa, Spain; Sud-A, Sudan-Arabs; Sud-N, Sudan-Niloti; Taj, Tajikistan; Tun, Tunisia; Tur, Turkey; Tuk, Turkmenistan; Ukr, Ukraine; Uae, United Arab Emirates; Yem, Yemen (Details in Additional files 3 and 4). For the Y-chromosome, the first two components, although accounting for only a quarter of the total variance, gather Marsh Arabs with almost all Arab populations and separate them along the first PC from western Eurasians, along the second PC from the African groups and by both components from South Asian populations. When the PCA was based on mtDNA haplogroup frequencies, Marsh Arabs occupied, together with Iraqi and Saudi Arabian populations, a position in the middle of the plot among three distinct groupings: the first included western Eurasian, the second embraced all the South Asian groups while the third represented the North Africa and South Arabian Peninsula peoples. Figure 4 Networks of the STR haplotypes associated with haplogroups J1-M267* and J1-Page08, respectively. The eight STR (YCAIIa, YCAIIb, DYS19, DYS389I, DYS389II, DYS390, DYS391 and DYS392) haplotypes observed in 54 and 377 samples, respectively, are listed in Additional file 5. Circles and coloured sectors are proportional to the number of subjects, with the smallest circle and sector equal to 1. Connecting lines are proportional to the number of mutations. For both systems, the longitudinal separation operated by the first PC is mainly due to the East-West decreasing frequency of East Asian haplogroups (see for example: Y-chromosome Hgs R2-M124, C-RPS4Y and H-M69; mtDNA Hgs A, F, D and G) and the increasing frequencies of the African haplogroups (see for example: Y-chromosome Hgs A-M13, B-M60, E-M35; mtDNA Hgs L1, L2 and L3) while the latitudinal separation operated by the second PC is mainly ascribable to the different distribution of haplogroups most frequent in West Eurasian (Y-chromosome Hgs J-M172, M267 and mtDNA Hgs H and U5), and the African-specific haplogroups (Y-chromosome Hgs A-M13, B-M60, E-M35 and mtDNA Hgs L0-3).
|
|
|
Post by Admin on Aug 3, 2018 18:34:29 GMT
Figure 5 illustrates the network of the control-region mtDNA haplotypes associated with each haplogroup found in this survey [Additional file 2]. The majority of haplogroups were present in both population samples although with scarce sub-haplogroup and haplotype overlapping. In addition, differently from the control sample, a number of Marsh Arab haplotypes were shared between two or more subjects. Figure 5 Network of 233 mtDNA control-region haplotypes observed among 319 Iraqi samples. These haplotypes [Additional file 2] refer to the variation observed between np 16024 and np 200. Circles are proportional to the number of subjects, with the smallest circle equal to 1. Connecting lines are proportional to the number of mutations including haplogroup diagnostic markers. Haplogroups and sub-haplogroups are labelled according to Table 1. Discussion Two hypotheses have been proposed for the origin of Marsh Arabs: (i) they could be aboriginal inhabitants of Mesopotamia, correlated to the old Sumerians; (ii) they could be foreign people of unknown origin. Although the origin of Sumerians has yet to be clarified [5], the two main scenarios, autochthonous vs foreign ancestry, may have produced different genetic outcomes with Marsh Arabs being genetically closer to Middle Eastern groups or other populations, for instance those of the Indian sub-continent. Thus, in order to shed some light on this question Marsh Arab population was investigated for mtDNA and Y chromosome markers. Due to their characteristics (uniparental transmission and absence of recombination) and their wide datasets, they are, at present, among the best genetic systems for detecting signs of ancient migration events and to evaluate socio-cultural behaviours [35, 36]. Evidence of a Middle Eastern origin of the Marsh Iraqi Arabs comes mainly from the Y chromosome Although different Western European mtDNA haplogroups were present in the Middle East in Palaeolithic times, they cannot always be interpreted as markers of Middle Eastern origin. For example, even if the mtDNA haplogroup H evolved in the Middle East ~18,000-15,000 years ago [34], different H sub-groups observed in this region, albeit at a rather low frequency, such as H1, arose outside and are most likely the result of gene flow from Europe [34, 37]. Y-chromosome variation, like that of mtDNA, is highly geographically structured [34, 38, 39]. However, Middle Eastern haplogroup J, which accounts for the great majority of paternal lineages of this region and marks different migration events toward Europe, Africa and Asia, does not display, at present, evidence of back migrations. A common ancestral origin of Marsh Arabs and Southern Arabian peoples Haplogroup J, with its two branches J1-M267 and J2-M172, is a Y-chromosome lineage dating to about 30,000 years ago. Its place of origin is still under discussion, but it is considered a landmark geographically linked to the Near Eastern region where the agricultural revolution and animal domestication appeared for the first time [34]. Accordingly, the frequency distribution of Hg J [13, 40] shows radial decreasing clines toward the Levant area, Central Asia, the Caucasus, North Africa, and Europe from focal points of high frequency in the Near East [12, 40, 41]. Although both clades (J1-M267 and J2-M172) evolved in situ and participated in the Neolithic revolution, their different geographic distributions suggest two distinct histories. While J2-M172 has been linked to the development and expansion of agriculture in the wetter northern zone and is also considered the Y-chromosome marker for the spread of farming into South East Europe, J1-M267 has been associated with pastoralism in the semi-arid area of the Arabian Peninsula [42, 43]. Despite this purported initial association, no evidence of pastoralism has been reported in the marsh area where one of the J1-M267 highest values (81.1%) has been observed (Additional file 6, Figure 6). Figure 6 Frequency (left panels) and variance (right panels) distributions of Y-chromosome haplogroups J1-M267, J1-M267* and J1-Page08. Maps are based on 102 digit points [Additional file 6]. Variance data are relative to the microsatellite loci DYS19, DYS389I, DYS389II, DYS390, DYS391 and DYS392 typed in all the reported samples. Frequency and variance details are reported in Additional files 6, 7 and 8. Recent expansions shape the present Marsh Arab Y-chromosome landscape When the two J1-M267 sub-clades, J1-M267* and J1-Page08 are considered (Figure 6), differential frequency trends emerge. The less represented J1-M267* primarily diffuses towards North East Mesopotamia and shows its highest incidence in the Assyrians of northern Iraq, and Turkey. By contrast, J1-Page08 accounts for the great majority of the J1 distribution in South Western Mesopotamia, reaching its highest value (74.1%) in the marsh area. By considering the STR haplotypes associated with the two branches, the highest values of variance are localized in northern Mesopotamia (North Iraq/South East Turkey) (Figure 6, Additional files 7, 8 and 9). For the J1-Page08 lineage, high variance values were also observed in Ethiopia, Oman and South Eastern Italy (Table 2). Although present data are not adequate to define the homeland of the J1-Page08 sub-clade, some useful information can be obtained from the haplotype network analysis (Figure 4). Thus, the pheripheric position of the Ethiopian and South Eastern Italian (European) haplotypes suggests that the high values of variance registered in these regions likely reflect the stratification of different migratory events, some of which occurred before the expansion and diffusion of the lineage outside the Middle Eastern area. As previously reported [31, 41], also the value of variance in the Omani is affected by the concomitant presence of both pheripheric and centrally expanded haplotypes. In this context, the low variance (0.118) observed in the Marsh Arabs underlines a recent expansion involving few haplotypes, all of which occupying a central position in the J1-Page08 network (Figure 4). In the less frequent J1-M267* clade, only marginally affected by events of expansion, Marsh Arabs shared haplotypes with other Iraqi and Assyrian samples, supporting a common local background (Figure 4). The analyses carried out on the mtDNA and Y chromosome of the Iraqi Marsh Arabs, a population living in the Tigris-Euphrates marshlands, have shown: (i) a prevalent autochthonous Middle Eastern component both in male and female gene pools; (ii) weak South-West Asian and African heritages, more evident for mtDNA; (iii) a higher male than female homogeneity, mainly determined by the co-occurrence of socio-cultural and genetic factors; (iv) a genetic stratification not only ascribable to recent events. The last point is well illustrated by Y-chromosome data where the less represented J1-M267* lineage indicates Northern Mesopotamia contributions, whereas the most frequent J1-Page08 branch reveals a local recent expansion about 4,000 years ago (Table 2). Although the Y-chromosome age estimates deserve caution, particularly when samples are small and standard errors large, it is interesting to note that these estimates overlap the City State period which characterised Southern Mesopotamia, and is testified to by numerous ancient Sumerian cities (Lagash, Ur, Uruk, Eridu and Larsa). In conclusion, our data show that the modern Marsh Arabs of Iraq harbour mtDNAs and Y chromosomes that are predominantly of Middle Eastern origin. Therefore, certain cultural features of the area such as water buffalo breeding and rice farming, which were most likely introduced from the Indian sub-continent, only marginally affected the gene pool of the autochthonous people of the region. Moreover, a Middle Eastern ancestral origin of the modern population of the marshes of southern Iraq implies that, if the Marsh Arabs are descendants of the ancient Sumerians, also Sumerians were not of Indian or Southern Asian ancestry. BMC Evolutionary Biology 2011 11:288
|
|